Electrooptic ellipsometry study of spontaneous polarization coupling in piezoelectric ZnO-BaTiO$_3$ heterostructures

V. Voora, T. Hofmann, M. Schubert, M. Brandt, M. Lorenz, and M. Grundmann

1 Nebraska Center for Materials and Nanoscience, Department of Electrical Engineering, University of Nebraska-Lincoln, NE 68588-0511, U.S.A.
2 Institute for Experimental Physics II, Faculty of Physics and Geosciences, University of Leipzig, Linnéstr. 5, D-04103 Leipzig, Germany

Email: vwoora1@bigred.unl.edu ellipsometry.unl.edu

Polarization coupled interfaces

Is there a charge polarization coupling in BTO/ZnO?

Can this be used to determine the amount of the spontaneous polarization in ZnO?

We estimate the first experimental value for the spontaneous polarization in ZnO: $P_{sp} = 4 \mu$C/cm2 [1]

Previous theory calculation: $P_{sp} = 5 \ldots 8 \mu$C/cm2 [4]

Case I

Case II

Case III

Partialy Depleted ZnO

Fully Depleted ZnO

Conductive ZnO

Transition

$V_i = 0$

$V_i = 0$

$V_i = 0$

$$V = E_i d_j$$

$$V = E_i d_j + \frac{N d_j}{2\varepsilon_i} + E_f d_j$$

$$V = \alpha_b \frac{d_i}{\varepsilon_j} - P_{dz} \frac{d_i}{\varepsilon_j} - P_{dz} \frac{d_i}{\varepsilon_j} + \frac{N d_j}{2\varepsilon_i} + E_f d_j$$

Best fit Sawyer-Tower model parameters

Experimental model calculated data as a function of input voltage [V]

Influence of ZnO spontaneous polarization ($\times 10^{-1}$ C/m2)

Initial polarization ($\times 10^{-2}$)μC/cm2

Thickness of BaTiO$_3$ (d_j) 0.5 μm

Thickness of ZnO (d_i) 1.45 μm

Input frequency (f) 1.5 kHz

Sample resistance (R_s) 13 kΩ

Dielectric constant of BaTiO$_3$ (K_{BaTiO_3}) 250

Dielectric constant of ZnO (K_{ZnO}) 8

Coercive field (E_C) 1.2 $\times 10^6$ V/m

Saturation polarization (P_s) 14.1 μC/cm2

Remanent polarization (P_r) 6.35 μC/cm2

Intrinsic concentration in ZnO (N_i) 5.5 $\times 10^{20}$ m$^{-3}$

Built-in voltage in the sample (V_{bi}) -1.03 V

Spontaneous polarization in ZnO (P_{sp}) -4.0 μC/cm2

Influence of ZnO layer thickness (μm)

Electrooptic ellipsometry study of piezoelectric properties

Wavelength averaged electrooptic changes

Calculated data

Calculated data

The coupling between the non-switchable lattice charge of wurtzite structure (ZnO) and the switchable ferroelectric polarization P_{sp} in perovskite structure (BaTiO$_3$) is interesting [1,2].

Here we report on electrical and electrooptic measurements of Pt/BaTiO$_3$/ZnO/Pt heterostructures.

We observe index of refraction and piezoelectric thickness hysteresis behavior concordant with electrical polarization hysteresis.

The simulations to the right depict electric Sawyer-Tower and BTO polarization hysteresis loops for our ZnO/BTO heterostructure. The model parameters are listed below.

Samples are prepared by Pulsed Laser Deposition, and subsequent masking with ohmic Pt back and front contacts.

Electric Sawyer-Tower and electrooptic ellipsometry measurements were performed on contacts and near contacts, respectively.

References:
[4] Bernardini et al., APL 86, 091904 (2005);

RESEARCH FAIR, UNL, April 2, 2008

Support: DFG FOR 404, UNL Startup, NSF MRSEC, JAWF