THz Resonances in Chiral Aluminum Nanowires

D. Schmidt, T. Hofmann, M. Schubert, and E. Schubert

Department of Electrical Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, U.S.A.

evaschub@engr.unl.edu
http://ellipsometry.unl.edu

Our Message

- Glancing angle deposition used to grow sculptured thin films composed of achiral and chiral aluminum wires
- Ellipsometric measurements of chiral nanowires in the far- and midinfrared spectral domain reveal equally spaced resonances with $\Delta \nu \sim 7.5\,\text{THz}$
- A first approach interprets THz resonances using a simple LC model
- Mueller matrix mapping in the NIR spectral range allows immediate determination of symmetry of the nanostructures

Properties of Sculptured Thin Films

Chiral THz Resonances in Chiral Aluminum Nanowires

- Muller matrix mapping in the NIR spectral domain reveals equally spaced resonances of self-organized nanostructures with a wide variety of shapes and different semiconductors or metals

Glancing Angle Deposition of Aluminum Nanowires

Achiral STF

- Structure shadow
- Particle flux
- Surface diffusion

The incoming particle flux at glancing angle causes self-organized columnar growth due to shadowing and slow surface adatom movement.

Chiral STF

- Vertical aluminum screws are grown while performing continuous substrate rotation during GLAD.

Optical Response of Aluminum Nanowires

NIR Mueller Matrix Mapping

- Non-zero reciprocal difference $(M_{ij}(\psi) - M_{ij}(\psi + \delta))$ hints to the existence of bi-anisotropic material properties and 3-fold symmetry of the STF.

Infrared Ellipsometry

- Equidistant resonances! **Achiral STF** shows simple Drude-like behavior. Best fit values for resistivity and scattering time are $\rho = 10.9 \times 10^{-12}\,\text{cm}$ and $\tau = 1.0\,\text{fs}$, respectively.

Comparison with aluminum bulk values

- Bulk: $\rho = 0.29 \times 10^{-8}\,\text{cm}$, $\tau = 6.7\,\text{fs}$
- STF: $\rho = 10.9 \times 10^{-12}\,\text{cm}$, $\tau = 1.0\,\text{fs}$

Constitutive relations for bi-anisotropic materials:

$$D = \varepsilon E = \sqrt{|\varepsilon_{11}|} (\hat{z} - \hat{\rho}) H$$

$$B = \mu H = \sqrt{|\mu_{11}|} (\hat{z} + \hat{\rho}) E$$

THz resonances modeled using Lorenzian lineshapes in the chiral tensor components + Drude-like isotropic dielectric background

STF: $\rho = 120 \times 10^{-12}\,\text{cm}$, $\tau = 0.6\,\text{fs}$

UNL Research Fair 2008, Graduate Student Poster Session