Thin films comprising heterogeneous metal-metaldielectric nanocolumns require different model approaches.

Ellipsometry Models for Nanohybrid Functional Columnar Thin Films

Homogeneous Biaxial Layer

F1-STFs can be described as single homogeneous biaxial layers with thickness d and complex functions n_{eff}, are individually determined.

- Euler angles Θ, Φ of rotation matrix A.
- Internal angles β of projection matrix U.

$$\varepsilon = AU$$

where:

- A is the rotational matrix (Euler angle rotation)
- U is the projection matrix (if triclinic or monoclinic)

Traditional Anisotropic Bruggeman EMA (TAB-EMA)

Slanted columns are represented by spatially aligned, anisotropic inclusions of three major effective polarizabilities P_{ijkl}, along principal axes i, j, k.

$$\sum_{i,j,k} f_i n_i - \sum_{i,j} f_{ij} n_{ij} = 0$$

Rigorous AB-EMA

A more rigorous approach considers the depolarization dyadic to be a function of the inclusions' shape U_{ij} and effective permittivity tensor (σ-electrodynamic approach).

$$D_j = \frac{1}{4\pi} \int \frac{U_{ij}}{\rho} d\theta d\phi$$

where:

- U_{ij} is the rotational dyadic tensor
- ρ is the electron density
- θ is the polar angle
- ϕ is the azimuthal angle

Results and Applications

Conformal Dielectric ALD Coating

- Conformal ALD coating on a columnar thin film.
- Optical modeling with ellipsometry.
- Depolarization dyadic to be a function of the inclusions' shape U_{ij}.

Conformal Metal ALD Coating

- Conformal ALD coating on a columnar thin film.
- Optical modeling with ellipsometry.
- Depolarization dyadic to be a function of the inclusions' shape U_{ij}.

In-situ ALD Growth Monitoring

- Growth monitoring with ellipsometry.
- Depolarization dyadic to be a function of the inclusions' shape U_{ij}.

Metal - Dielectric

- Optical modeling with ellipsometry.
- Depolarization dyadic to be a function of the inclusions' shape U_{ij}.

Metal - Metal

- Optical modeling with ellipsometry.
- Depolarization dyadic to be a function of the inclusions' shape U_{ij}.

- Set of depolarization factors for each constituent required.

- AB-EMA approach yields excellent fraction estimates for thin films with heterogeneous nanocolumns.