
Functionalization of Sculptured Thin Films with Atomic Layer Deposition

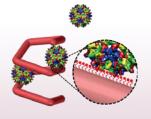
D. Schmidt*, N. Ianno, E. Schubert, and M. Schubert

Department of Electrical Engineering and Center for Nanohybrid Functional Materials, University of Nebraska-Lincoln, U.S.A.

*schmidt@huskers.unl.edu

http://ellipsometry.unl.edu

http://cnfm.unl.edu


Our Message

- Glancing angle deposition is utilized to grow metallic sculptured thin films (STFs). Subsequently, a thin conformal Al₂O₃ passivation layer is coated by means of atomic layer deposition (ALD).
- An anisotropic Bruggeman EMA approach is employed to analyze Mueller matrix ellipsometry spectra and to determine monoclinic optical and structural properties as well as fractions of film constituents.
- Core optical constants change upon deposition of a passivation layer, possibly due to the large surface area to volume ratio (SA:V = 190)!
- Al₂O₃ passivated STFs do not show aging effects!
- ALD is an excellent technique to functionalize STFs and modify their physical properties!

Selective capsid capturing in hollow nanohelices with matched core dimensions

Motivation

Viral attachment on bio-functionalized (selfassembled monolayers) nanoscaffold surfaces

valued Mueller

matrix connects

the incident and

emergent Stokes

components

vecto

 S_1

 S_2

 $|S_3|$

Chiral magnetic domain alignment in ferromagnetic core-shell Preserve as-deposited helices physical properties over time.

 M_{21} M_{22} M_{23} M_{24}

 M_{32} M_{33}

 $M_{\rm 42}$ $M_{\rm 43}$

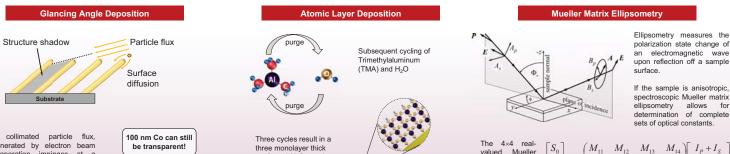
 M_{31}

 M_{41}

wave

for

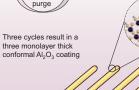
allows

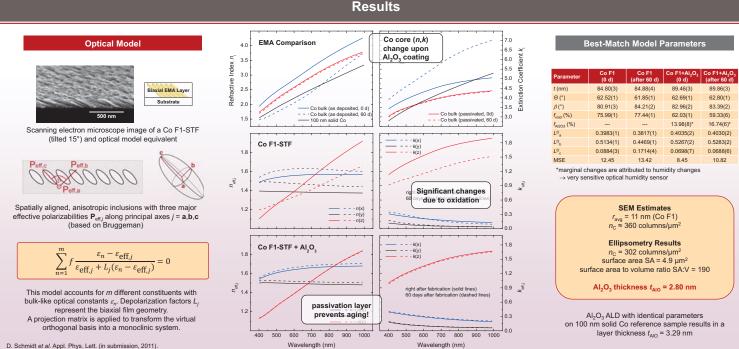

 M_{34}

D. Schmidt et al. Appl. Phys. Lett. 94, 011914 (2009)

 $I_P - I_S$

 $I_{45} - I_{-45}$


 M_{44} $I_{RC} - I_{LC}$ I_{ir}


Experimental Techniques

generated by electron beam evaporation impinges at a glancing angle onto substrate and results in selforganized, randomly distributed but highly coherent slanted nanocolumns (F1-STFs).

Substra

