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Our Message

 Glancing angle deposition is utilized to grow achiral and
chiral metallic sculptured thin films.

 Generalized Ellipsometry (GE) is employed to determine
optical and geometrical properties of highly anisotropic thin
films in different environments.

 Optical properties can be altered and tuned by infiltration of
(conducting) polymers in void spaces between
nanostructures.

 Minute amounts of chemical molecules dramatically change
the overall film birefringence. Consequently, due to an
extreme sensitivity to a changing environment such
sculptured thin films can be used as agent-free chemical
sensors.
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Infiltration of Conducting Polymers

The 4x4 real-valued Mueller
matrix connects the incident
and emergent Stokes vector
components, which are linear
combinations of different
polarization states.

Ellipsometry measures the polarization
state change of an electromagnetic
wave upon reflection off a sample
surface.

If the sample is anisotropic, generalized
(Mueller matrix) ellipsometry allows for
determination of complete and accurate
sets of optical constants.

New set of optical constants
with identical structural parameters for chevron
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Agent-free Chemical Sensing

P P

P P

Light from an LED, for
example, passes through the
sample, which is in between
crossed polarizers (P).
Different chemicals or
reagents modify the film
birefringence, which can be
detected by darkening or
brightening of sensing device.
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Change of ni and ki along
major polarizability axes i
= a, b, c upon changing
ambient from nanopure
water to ethanol (nH2O –
nEtOH = 0.002, at 633 nm).

hydrafact.com

1.6

2.0

 n(a)
 n(b)
 n(c)
 n(a)
 n(b)
 n(c)  

 

n

500 1000 1500

0.3

0.6

0.9

 as deposited
 with polymer

 Wavelength (nm)

 

k

Titanium Chevron 
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Titanium L-Shape 
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Substrate

Biaxial Layer 1

Biaxial Layer 2

Polymer
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PEDOT

w/ polymer Layer 1 Layer 2 Polymer

Thickness d 47.7 nm 69.5 nm 3.6 nm

Inclination  57.5° 62.5° ‐‐‐

as grown Layer 1 Layer 2

Thickness d 59.7 nm 56.2 nm

Inclination  54.1° 68.2°

w/ polymer Layer 1 Layer 2 Polymer

Thickness d 62.5 nm 48.7 nm 3.1 nm

Inclination  64.7° 68.1° ‐‐‐

as grown Layer 1 Layer 2

Thickness d 47.7 nm 69.5 nm

Inclination  57.5° 62.5°

Structural parameters for L-shape have to be
changed slightly for optimum results
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Principal optical constants of a
slanted columnar thin film
deposited on a QCM crystal:
• in air
• immersed in nanopure H2O
• after adsorption of

CTAB (2.5 mM)
• after desorption (H2O rinse)

A collimated particle flux, generated by
electron beam evaporation impinges at
a glancing angle onto the substrate
and results in self-organized, randomly
distributed but highly coherent slanted
nanocolumns.

Immerse in liquids or 
spin coating polymers

Introducing continuous
substrate rotation,,
sculptured thin films in
shapes of hollow core
nanocoils can be
engineered.

QCM liquid cell with
optical windows

slanted columnar thin films are
deposited directly on a QCM
crystal

Optical Model


