Combinatorial spectroscopic ellipsometry and quartz crystal microbalance with dissipation to study organic ultra-thin film evolution

K.B. Rodenhausen1,2*, T. Kasputis3,4, J. Gerasimov2,5, H. Wang2,6, A.K. Pannier2,3, R. Lai2,5, and M. Schubert2,6

1Department of Chemical and Biomolecular Engineering; 2Nebraska Center for Materials and Nanoscience; 3Department of Biological Systems Engineering; 4Biomedical Engineering Program; 5Department of Chemistry; 6Department of Electrical Engineering; University of Nebraska-Lincoln, U.S.A.

http://ellipsometry.unl.edu

Our Message

- Ultra-thin (≤ 10 nm) organic thin film attachment was studied with combinatorial spectroscopic ellipsometry (SE) and quartz crystal microbalance with dissipation (QCM-D).
- The dynamic porosity of a self-assembled monolayer (SAM) was found, and the surface chemistry of the layer was verified by contact angle measurement.
- We report a preliminary study for biosensor applications, by SE/QCM-D. Selective hybridization of a target molecule to an aptamer probe was observed by SE.

Self-Assembled Monolayer (SAM) Chemisorption

2 mM 8-mercapto-1-octanol in water

Selctively Detecting Genes that Increase the Risk of Prostate or Pancreatic Cancer

Experimental Setup

Measurement and Analysis Scheme

- **Assumptions:**
 - Adhesive index of refraction
 - Adhesive volume fraction
 - Adhesive density
 - Adhesive thickness
 - Total film density
 - SE thickness
 - Overtone N
 - QCM-D thickness
 - Overtone N
 - QCM-D surface density
 - Adhesive mass fraction
 - Dipolar

- **Time (min)**
- **Thickness (nm)**
- **Probe Chemisorption in Physiological Buffer**
- Uniform \(t \) reflects simple kinetics and homogenous structure
- Pressure perturbations: flow control important
- **Selectire Gene Hybridization in Physiological Buffer**
- SE sensitive to sub-angstrom average layer thickness changes

Acknowledgements: The Procter & Gamble Co., J.A. Woollam Co., Inc., National Science Foundation under award EPS-1004094