Motivation

→ GaP:N as novel material for light emitters/detectors in the visible spectral range
→ crossover from indirect to direct material theoretically predicted
→ strong decrease of the band-gap energy with increasing nitrogen concentration experimentally observed

Results

→ growth of GaP$_N$ ($y < 0.10$) single layers and GaP$_x$Ga$_{1-x}$N$_y$superlattices on GaP substrates with orientations (001), and (001) with 5° off towards [110]
→ increased N-incorporation on miscut substrates
→ photoluminescence (PL): redshift of PL-peak with increasing y, y-disappearance of phonon replicas for y > 0.0135 as possible hint for indirect to direct crossover
→ transmission (TM): redshift of N-induced absorption tail with y, absorption peaks due to excitation bound to NN-pairs
→ ellipsometry (MIR): detection of a GaP$_{0.97}$N$_{0.03}$ (366 cm$^{-1}$) and a GaN$_{0.97}$N$_{0.03}$ (450 cm$^{-1}$) like phonon; linear increase of the amplitude of the GaN-like phonon open possibility to measure y independently
→ ellipsometry (MIR-UV-VUV): detection of 6 critical point transitions at the Γ point (E$_{\Gamma}$, E$_{\Sigma}$, E$_{\Delta}$, and along the $[111]$, $[110]$, and $[100]$ directions) ΔE to Σ and Δ, respectively; blueshift of E$_{\Gamma}$, Σ, and Δ with y, and small y-dependence of all other detected CPs indicate that the direct Γ, Σ, and Δ transitions do not show the N-induced redshift of the absorption tail

GaP$_N$ single layers

→ GaPN single layers
→ high-resolution x-ray diffraction
→ GaP$_N$ (y = 0.06%)
→ GaP$_N$ (y = 0.009%)

GaP/GaP MQW's

→ GaP$_{0.97}$N$_{0.03}$ (366 cm$^{-1}$) and a GaN$_{0.97}$N$_{0.03}$ (450 cm$^{-1}$) like phonon; linear increase of the amplitude of the GaN-like phonon open possibility to measure y independently
→ increased N-incorporation on miscut towards [110] miscut compared to (001) GaP substrates
→ increased gas-phase composition of Ga$_2$N$_3$N$_y$ compared to the growth of Ga$_2$N$_3$N$_y$N$_z$ due to the higher P partial pressure

Photoluminescence

→ impurity limit ($y = 0.006$%): luminescence due to excitons bound to NN-pairs with corresponding photon replicas
→ redshift of PL-peak with increasing y
→ $y \leq 0.015$: luminescence of PL peaks disappears
→ possible explanation: $0.06 \leq y \leq 2.85$%: luminescence due to N-cluster states with more than two nitrogen atoms
→ $y \leq 0.015$: luminescence of PL peaks decreases with increasing nitrogen concentration
→ redshift of the absorption tail with increasing y
→ interaction between NN-pairs and formation of N-cluster with more than two N atoms leads to increasing broadening and decreasing amplitude of NN-peaks, respectively
→ redshift of absorption tail might be explained by a superposition of N-cluster states

Phonon Properties

→ method: mid-infrared spectroscopic ellipsometry
→ we detect a GaP-like (E$_{\Omega}$, Ω = 366 cm$^{-1}$; Ω = 403 cm$^{-1}$) and a GaN-like (E$_{\Omega}$, Ω = 485 cm$^{-1}$; Ω = 450 cm$^{-1}$) phonon band
→ Ω is redshifted with increasing y as a result of tensile strain and alloying
→ the TO-frequencies of the TO$_1$ and TO$_2$ at $y = 0.03$ are nearlyunchanged with increasing y for x, the effects of alloying and biaxial tensile strain-compensate
→ Ω \approx (494 ± 54) cm$^{-1}$ agrees well with the calculated local-mode frequency of N in GaP$_y$ (Ω = 495 cm$^{-1}$), extended linear diatomic chain model), and with several experimental results for N-doped GaP$_{1-y}$N$_y$ (Ω \approx 494 cm$^{-1}$) and (y = 0.03) blueshifted with increasing y and accounts for the increasing amplitude of Ω with increasing y (figure 4) for the GaN-like phonon
→ linear increase of Ω with y (dΩ/dy = 2.75 ± 0.25 cm$^{-1}$) gives possibility to measure the nitrogen concentration in GaP$_x$N$_y$ independently

Optical Properties of GaP$_{1-y}$N$_y$

G. Leibiger*, V. Gottschalch1
G. Benndorf2, M. Schubert2
R. Schwabe3

*E-mail: pg9ju@studserv.uni-leipzig.de

1University of Leipzig, Faculty for Chemistry and Mineralogy, Linnestr. 3, 04103 Leipzig, Germany
2University of Leipzig, Faculty for Physics and Earthsciences, Linnestr. 5, 04103 Leipzig, Germany
3Institute for Surface Modification e.V., Permoserstr. 15, 04303 Leipzig, Germany

Acknowledgment: This work is supported by the Deutsche Forschungsgemeinschaft under grant Go 6294/1-1, and by the National Science Foundation under contract DMI-9905150.

N-N pairs in GaP$_x$N

→ N is a prevalent impurity in GaP and causes binding states within the band gap of the host material
→ electron is bound in the shortrange potential of two nitrogen atoms (distance Δd_{NN}, below), binding energy decreases with increasing distance Δd_{NN} (< 0.03)
→ N-N complex acts as an ionized acceptor ($i \approx 8$)

Critical points

→ method: near-infrared to vacuum-ultraviolet spectroscopic ellipsometry
→ all critical points (CPs)-energies are affected by the combined effects of tensile strain, which should result in a redshift of CPs, and of alloying (linear interpolation to the CP energies of [GaP-N$_y$], quantitative calculations of both effects is difficult because there is a lack of CP-energies of [GaP-N$_y$], and a lack of determination potentials of both, GaP and Δ-GaP
→ blueshift of critical points E_{Ω} and E_Σ with y, due to dominating influence of alloying (ΔE_{Ω} and ΔE_Σ) in contrast to redshift of the absorption tail and the PL peak
→ small redshift of CP E_Δ with y, due to dominating influence of tensile strain
→ no shift of CP E_Σ and E_Δ with y due to compensation of both effects
→ direct Γ-, Σ-, and Δ-transitions do not follow the nitrogen-induced unusual behavior of the absorption tail in agreement with recent pseudopotential impred calculations by P. R. Kent et al. [Phys. Rev. Lett. 86, 2641 (2001)]