Our Message

- The complex anisotropic THz optical response of Cobalt columnar sculptured thin films (STFs) can be determined precisely using spectroscopic ellipsometry (SE).
- An anisotropic Bruggeman effective medium approach allows accurate analysis of the THz-SE data.
- The use of THz transparent substrates enhances STFs' show distinct surface functionalization allows the changes in the host (ambient) medium permittivity can be accurately monitored – metal STFs can serve as a building block for future THz biochemical sensor applications.

Effective Medium Approach

Anisotropic Bruggeman EMA

\[
\varepsilon_{ij} = \varepsilon_{m} + \left(\varepsilon_{a} - \varepsilon_{m} \right) \frac{c_{ij}}{c_{ij} + \varepsilon_{m} \delta} \]

- \(\varepsilon_{ij} \): anisotropic Bruggeman EMA dielectric function tensor components along the major axes / \(a, b, c \)
- \(\varepsilon_{m} \): host medium permittivity
- \(\varepsilon_{a} \): permittivity of the nanocolumnar inclusions
- \(c_{ij} \): volume faction of the nanocolumnar inclusions
- \(\delta \): depolarization factors with \(L_{ab}L_{bc}L_{ca} = 1 \)

Optical Response of Metal STFs

- STF's show distinct optical anisotropy in VIS spectral range.
- Dramatic changes have been observed upon ambient changes in the VIS spectral range.

STF THz Optical Sensors

- Detection of Liquids:
- Detection of Bio-molecules:
 - Minute amounts of liquids are detectable due to the changes in the STF optical response.
 - Surface functionalization allows selective detection of biomolecules and their THz optical properties.
 - Nanohybrid functional materials for the THz frequency domain.

THz Dielectric Anisotropy of Co STFs

- Measured in air and water ambient.
- The probe beam illuminates the backside of the sample as shown in the inset.

Cobalt Sculptured Thin Films in Aqueous Environment

- Calculated Mueller matrix (\(M_{ij} \)) difference spectra obtained by calculating the difference between \(M_{ij} \) obtained for the STF in water ambient and \(M_{ij} \) obtained for the STF in a test ambient.
- The test ambient is identical to water described by the commonly used (Debye relaxation) except for a constant offset in the permittivity \(\varepsilon_{\infty} \).

THz Optical Sensor Response

- Mueller matrix spectra obtained for the Co STF sample in air and water ambient.
- The in-plane rotation angle was \(\phi = 225^\circ \).

Experimental Setup and Sample Preparation

- Generalized THz Ellipsometry
 - Rotating analyzer ellipsometry configuration.
 - Achromatic (THz-MIR) polarization rotator (PR) to manipulate the input polarization state.
 - Backward wave oscillator (BWO) source.
 - Golay cell detector (GC).

- Co STF Sample Preparation
 - Custom electron-beam glancing angle deposition of Cobalt sculptured thin films.
 - 85° incident particle flux with respect to the substrate normal.
 - Low doped, double-side polished Si substrate.
 - No substrate rotation during deposition.
 - Nominal film thickness is 450 nm with a 65° slanting angle.

THz Sensor Concept

THz Sensor Concept

- **Detection of Liquids:**
 - Minute amounts of liquids are detectable due to the changes in the THz optical response.
- **Detection of Bio-molecules:**
 - Surface functionalization allows selective detection of biomolecules and their THz optical properties.
 - Nanohybrid functional materials for the THz frequency domain.

**Experimental (green lines) and best-model calculated (red lines) off-diagonal Mueller matrix spectra for the Co STF sample for an in-plane rotation angle \(\phi = 135^\circ \).

Left: Mueller matrix spectra for a Co STF sample for three different in-plane rotation angles \(\phi = 90^\circ, 135^\circ, \) and \(180^\circ \). The spectra for the silicon substrate before Co STF deposition are shown for comparison.

Metal Sculptured Thin Film
THz Optical Sensors

T. Hofmann*, D. Schmidt, A. Boosalis, P. Kühne, C.M. Herzinger, E. Schubert, and M. Schubert

*Department of Electrical Engineering, University of Nebraska-Lincoln, U.S.A.

J. A. Woollam Co. Inc., 645 M Street, Suite 102, Lincoln, NE 68508-2243, U.S.A.

*thofmann@engr.unl.edu

MRS Fall Meeting, 26-30 November 2011, Boston MA

Major Funding from NSF EPS-1004094 and MRI DMR-0922937