Metal Sculptured Thin Film THz Optical Sensors

UNIVERSITY OF NEBRASKA-LINCOLN

T. Hofmann^{*1}, D. Schmidt, A. Boosalis¹, P. Kühne¹, C.M. Herzinger², E. Schubert¹, and M. Schubert¹

¹ Department of Electrical Engineering, University of Nebraska-Lincoln, U.S.A. ² J. A. Woollam Co. Inc., 645 M Street, Suite 102, Lincoln, NE 68508-2243, U.S.A.

ellipsometry.unl.edu * thofmann@engr.unl.edu

Our Message STF THz Optical Sensors Optical Response of Metal STFs THz Sensor Concept • The complex anisotropic THz optical response of Cobalt columnar sculptured thin films (STFs) can **Detection of Liquids: Detection of Bio-molecules:** be determined precisely using spectroscopic STF's show distinct ellipsometry (SE). optical anisotropy in VIS spectral range • An anisotropic Bruggeman effective medium (D. Schmidt et al., J. Appl. approach allows accurate analysis of the THz-SE Phys. 105, 113508 (2009)) Substrate ubstrate

M22

- data.
- The use of THz transparent substrates enhances the STF optical fingerprint.
- The changes in the host (ambient) medium permittivity can be accurately monitored – metal **STFs can serve as a building block for future THz** biochemical sensor applications.
- Dramatic changes have been observed upon ambient changes in the VIS spectral range

THz spectral response and effects upon ambient changes are unknown!

 $\stackrel{\text{come Experiment}}{\longrightarrow} \lambda = 630 \text{ nm}$

φ(°)

- Minute amounts of liquids are detectable due to the changes in the STF optical response
- Surface functionalization allows selective detection of biomolecules and their THz optical properties

Nanohybrid functional materials for the THz frequency domain!

Experimental Setup and Sample Preparation

THz Dielectric Anisotropy of Co STFs

Generalized THz Ellipsometry

- rotating analyzer ellipsometry • configuration
- achromatic (THz-MIR) polarization • rotator (PR) to manipulate the input polarization state
- backward wave oscillator (BWO) source
- Golay cell detector (GC) •

Hofmann et al., Rev. Sci. Instrum. 81, 023101 (2010)

Co STF Sample Preparation

- custom electron-beam glancing angle • deposition of Cobalt sculptured thin films
- 85° incident particle flux with respect to the substrate normal
- low doped, double-side polished Si • substrate
- no substrate rotation during deposition results in a slanted nanocolumnar STF
- nominal film thickness is 450 nm with a 65° slanting angle

SEM microgrpah (sample tilted 15°) of the Co STF

v[THz]

Right: Experimental (green lines) and bestmodel calculated (red lines) off-diagonal Mueller matrix spectra for the Co STF sample for an inplane rotation angle $\varphi = 135^{\circ}$.

Left: Mueller matrix spectra for a Co STF sample for three different in-plane rotation angles $\varphi = 90^{\circ}$, 135°, and 180°. The spectra for the silicon substrate before Co STF deposition are shown for comparison.

Effective Medium Approach

Cobalt Sculptured Thin Films in Aqueous Environment

Anisotropic Bruggeman EMA

- $f(\varepsilon_i \varepsilon_m)\varepsilon_j$ $\varepsilon_j = \varepsilon_m + \frac{1}{\varepsilon_i + L_j(\varepsilon_i - \varepsilon_j)}$
- anisotropic Bruggeman EMA dielectric function tensor E; components along the major axes j = a, b, c
- host medium permittivity
- permittivity of the nanocolumnar inclusions
- volume faction of the nanocolumnar inclusions

Real $\varepsilon_{1,a}$, $\varepsilon_{1,b}$, and $\varepsilon_{1,c}$ and imaginary $\varepsilon_{2,a}$, $\varepsilon_{2,b}$, and $\varepsilon_{2,c}$ part of the THz orthorhombic dielectric functions obtained from the best-model calculation of the Co STF sample.

Mueller matrix spectra obtained for the Co STF sample in air and water ambient. The in-plane rotation angle was $\varphi = 225^{\circ}$. Note that the THz probe beam illuminates the backside of the sample as shown in the inset.

Off-diagonal Mueller matrix spectra obtained for the Co STF sample in air and water ambient for the in-plane rotation angle $\varphi =$ 225°. Note that the spectra obtained for water ambient are shifted by 0.2.

The test ambient is identical to water (described by the commonly used Debye relaxation) except for a constant offset in the permittivity $\delta \varepsilon_{off}$.

MRS Fall Meeting, 26-30 November 2011, Boston MA

Major Funding from NSF EPS-1004094 and MRI DMR-0922937