Free-Charge Carrier Profiles of Iso- and Anisotype Si Homojunctions

UNIVERSITY OF NEBRASKA-LINCOLN

A. Boosalis*, T. Hofmann1, J. Šík2, and M. Schubert1

1Department of Electrical Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, U.S.A.
2ON Semiconductor, Rožnov pod Radhoštěm, Czech Republic

*alex.boosalis@huskers.unl.edu
ellipsometry.unl.edu

5th International Conference on Spectroscopic Ellipsometry, Albany, NY, May 2010

Our Message

• We demonstrate the first desktop THz ellipsometer in the frequency range from 0.1 to 1.5 THz (3 to 50 cm⁻¹) using a rotating analyzer configuration and a tunable backward wave oscillator source.
• THz ellipsometry enables optical determination of low (10¹⁸ cm⁻³) free charge carrier concentrations in silicon bulk and layered structures.
• THz ellipsometry can be used to accurately find the location of an abrupt isotype (p+n or n+p) homojunction as well as the diffused carrier concentration profile.
• Simultaneous analysis of THz and FIR data allows contact-free, non-destructive measurement of complex semiconductor structures.

Motivation

• Optical sensitivity to low carrier concentration levels via THz resonance polarizations provides a new technique to study complex semiconductor structures.
• Integrated Circuit waveguides for photonic computation and integration with optical fiber communications.
• High mobility transistors
• Silicon homojunction interfacial workfunction internal photoemission (HIWIP) far-infrared detectors
• The low THz region is dominated by surface guided waves, present here at ~290 GHz and ~900 GHz.
• The FIR region is dominated by Fabry-Perot oscillations, which damp at high frequency.

Silicon Iso- and Anisotype Example Systems

Model System

Spectral Features

• p+n Sample

P+P+ Sample

N+N+ Sample

N/P+P+ Sample

Analytical Model

Analytical solution to Poisson equation of an isotype homojunction [1]:

\[\phi(x) = -\frac{2}{\varepsilon_0 \varepsilon_r} \int \rho(x') dx' \]

Assuming semi infinite boundary conditions and substituting the non-degenerate semiconductor expressions:

\[N(x) = N_{th} \exp(-\frac{\phi(x)}{kT}) \]

\[P(x) = N_{th} \exp(\frac{\phi(x)}{kT}) \]

Results in a simplified equation if \(N_x = N_{th} \), where \(N_x \) may be determined entirely in terms of \(N_x \), \(N_N \), and a characteristic length \(L \).

\[N(x) = N_{th} \exp \left[\frac{1}{\varepsilon_0 \varepsilon_r} \left(\frac{\phi(x)}{kT} - \frac{\phi(L)}{kT} \right) \right] \]

Separate solutions for each side of the abrupt dopant junction lead to an asymmetric carrier profile. Mobility is also given as a function of concentration [2].

\[\mu = \mu_0 + \frac{\mu_0}{\frac{n}{n_0} + \frac{1}{\frac{p}{p_0}}} \]

Funding: NSF, MRI, MRSEC, COE, JAWF